$\frac{\text { CU JUNE II }}{1 .} \quad \frac{9 x^{2}}{(x-1)^{2}(2 x+1)}=\frac{A}{(x-1)}+\frac{B}{(x-1)^{2}}+\frac{C}{(2 x+1)}$
Find the values of the constants A, B and C.

$$
\begin{aligned}
& \Rightarrow 9 x^{2} \equiv A(x-1)(2 x+1)+B(2 x+1)+C(x-1)^{2} \\
& x=1 \Rightarrow 9 \equiv 3 B \Rightarrow B=3 \\
& x=\frac{1}{2} \Rightarrow \frac{9}{4} \equiv \frac{9}{4} C \Rightarrow C=1 \\
& x=0 \quad 0=-A+B+C \Rightarrow-A+3+1=0 \Rightarrow A=4
\end{aligned}
$$

2.

$$
\mathrm{f}(x)=\frac{1}{\sqrt{\left(9+4 x^{2}\right)}}, \quad|x|<\frac{3}{2}
$$

Find the first three non-zero terms of the binomial expansion of $\mathrm{f}(x)$ in ascend h of x. Give each coefficient as a simplified fraction.

$$
\begin{aligned}
& f(x)=\left(9+4 x^{2}\right)^{-\frac{1}{2}}=9^{-\frac{1}{2}}\left(1+\frac{4}{9} x^{2}\right)^{-\frac{1}{2}} \\
& f(x) \simeq \frac{1}{3}\left(1+\left(-\frac{1}{2}\right)\left(\frac{4}{9} x^{2}\right)+\left(\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2}\right)\left(\frac{4}{9} x^{2}\right)^{2}\right) \\
& \simeq \frac{1}{3}\left(1-\frac{2}{9} x^{2}+\frac{2}{27} x^{4}\right) \simeq \frac{1}{3}-\frac{2}{27} x^{2}+\frac{2}{81} x^{4}
\end{aligned}
$$

3.

Figure 1

A hollow hemispherical bowl is shown in Figure 1. Water is flowing into the bowl. When the depth of the water is $h \mathrm{~m}$, the volume $V \mathrm{~m}^{3}$ is given by

$$
V=\frac{1}{12} \pi \cdot h^{2}(3-4 h), \quad 0 \leqslant h \leqslant 0.25
$$

(a) Find, in terms of $\pi, \frac{\mathrm{d} V}{\mathrm{~d} h}$ when $h=0.1$

Water flows into the bowl at a rate of $\frac{\pi}{800} \mathrm{~m}^{3} \mathrm{~s}^{-1}$.
(b) Find the rate of change of h, in ms^{-1}, when $h=0.1$
a)

$$
\begin{align*}
& V=\frac{1}{12} \pi h^{2}(3-4 h)=\frac{1}{4} \pi h^{2}-\frac{1}{3} \pi h^{3} \tag{2}\\
& \frac{d V}{d h}=\frac{1}{2} \pi h-\pi h^{2} \quad h=0.1 \Rightarrow \frac{d V}{d h}=\frac{1}{20} \pi-\frac{1}{100} \pi \\
&
\end{align*}
$$

b) $\frac{d V}{d t}=\frac{\pi}{800} \quad \frac{d h}{d t}=\frac{d h}{d V} \times \frac{d V}{d t}$

$$
\Rightarrow \frac{d h}{d t}=\frac{2 S}{\pi} \times \frac{\pi}{800}=\frac{1}{32} \text { when } h=0.1
$$

Figure 2
Figure 2 shows a sketch of the curve with equation $y=x^{3} \ln \left(x^{2}+2\right), x \geqslant 0$.
The finite region R, shown shaded in Figure 2, is bounded by the curve, the x-axis and the line $x=\sqrt{ } 2$.

The table below shows corresponding values of x and y for $y=x^{3} \ln \left(x^{2}+2\right)$.

x	0	$\frac{\sqrt{ } 2}{4}$	$\frac{\sqrt{ } 2}{2}$	$\frac{3 \sqrt{ } 2}{4}$	$\sqrt{ } 2$
y	0	0.0333	0.3240	1.3596	3.9210

(a) Complete the table above giving the missing values of y to 4 decimal places.
(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 2 decimal places.
(c) Use the substitution $u=x^{2}+2$ to show that the area of R is

$$
\begin{equation*}
\frac{1}{2} \int_{2}^{4}(u-2) \ln u \mathrm{~d} u \tag{4}
\end{equation*}
$$

(d) Hence, or otherwise, find the exact area of R.
b) $\frac{1}{2}\left(\frac{\sqrt{2}}{4}\right)\left(0+3.9210+2\left(0.0333+0.324+\frac{1}{2}\right.\right.$
$21.30 \quad(2 d p)$

$$
\text { c) } \begin{array}{ll}
u=x^{2}+2 & x=0 \quad u=0^{2}+2=2 \\
\frac{d u}{d x}=2 x & x=\sqrt{2} u=(\sqrt{2})^{2}+2=4 \\
d x=\frac{d u}{2 x} & x^{2}=u-2 \\
\int_{0}^{\sqrt{2}} x^{3} \ln \left(x^{2}+2\right) d x=\int_{2}^{4} x^{3} \ln u \frac{d u}{2 x} \\
=\frac{1}{2} \int_{2}^{4} x^{2} \ln u d u=\frac{1}{2} \int_{2}^{4}(u-2) \ln u d u
\end{array}
$$

d) $R=\frac{1}{2} \int_{2}^{4}(u-2) \ln u d u$

$$
\begin{array}{cc}
u=\ln u & \frac{d v}{d u}=u-2 \\
\frac{d u^{*}}{d u}=\frac{1}{u} & v=\frac{1}{2} u^{2}-2 u
\end{array}
$$

$$
R=\frac{1}{2}\left(\left(\frac{1}{2} u^{2}-2 u\right) \ln u-\int\left(\frac{1}{2} u^{2}-2 u\right) \frac{1}{u} d u\right)
$$

$$
R=\frac{1}{2}\left(\left(\frac{1}{2} u^{2}-2 u\right) \ln u-\int \frac{1}{2} u-2 d u\right)
$$

$$
R=\frac{1}{2}\left[\left(\frac{1}{2} u^{2}-2 u\right) \ln u-\frac{1}{4} u^{2}+2 u\right]_{2}^{4}
$$

$$
R=\frac{1}{2}[(0-4+8)-(-2 \ln 2-1+4)]
$$

$$
R=\frac{1}{2}[1+2 \ln 2]=\frac{1}{2}+\ln 2
$$

5. Find the gradient of the curve with equation

$$
\ln y=2 x \ln x, \quad x>0, y>0
$$

at the point on the curve where $x=2$. Give your answer as an exact value.

$$
\begin{array}{ll}
\frac{d}{d x}(\ln y)=\frac{d}{d x}(2 x \ln x) & u=2 x \quad v=\ln x \\
\Rightarrow \frac{1}{y} \frac{d y}{d x}=2 \ln x+2 & v u^{\prime}+u v^{\prime} \\
\Rightarrow \frac{d y}{d x}=y(2 \ln x+2) &
\end{array}
$$

when $x=2 \quad \ln y=4 \ln 2 \Rightarrow \ln y=\ln 16 \Rightarrow y=16$

$$
\left.\therefore \frac{d y}{d x}\right|_{x=2}=16(2 \ln 2+2)=32 \ln 2+32
$$

6. With respect to a fixed origin O, the lines l_{1} and l_{2} are given by the eq

$$
l_{1}: \quad \mathbf{r}=\left(\begin{array}{r}
6 \\
-3 \\
-2
\end{array}\right)+\lambda\left(\begin{array}{r}
-1 \\
2 \\
3
\end{array}\right), \quad l_{2}: \mathbf{r}=\left(\begin{array}{r}
-5 \\
15 \\
3
\end{array}\right)+\mu\left(\begin{array}{r}
2 \\
-3 \\
1
\end{array}\right)
$$

where λ and μ are scalar parameters.
(a) Show that l_{1} and l_{2} meet and find the position vector of their point of intersection A.
(b) Find, to the nearest 0.1°, the acute angle between l_{1} and l_{2}.

The point B has position vector $\left(\begin{array}{r}5 \\ -1 \\ 1\end{array}\right)$.
(c) Show that B lies on l_{1}.
(d) Find the shortest distance from B to the line l_{2}, giving your answer to 3 significant figures.
a) $\left(\begin{array}{c}6-\lambda \\ -3+2 \lambda \\ -2+3 \lambda\end{array}\right)=\left(\begin{array}{c}-5+2 \mu \\ 15-3 \mu \\ 3+\mu\end{array}\right) \Rightarrow \begin{aligned} & 6-\lambda=-5+2 \mu-i \\ & -3+2 \lambda=15-3 \mu-j \\ & -2+3 \lambda=3+\mu-k\end{aligned}$

$$
\text { i) } \begin{aligned}
\Rightarrow \lambda=11-2 \mu \quad(n+0 j)-3+22-4 \mu & =15-3 \mu \\
& \Rightarrow \mu=4, \lambda=3
\end{aligned}
$$

check with $k \Rightarrow-2+3 \lambda=7 \quad 3+\mu=7 \quad \therefore$ they meet

$$
\lambda=3 \Rightarrow A\left(\begin{array}{l}
3 \\
3 \\
7
\end{array}\right)
$$

b) $\theta=\cos ^{-1}\left(\left\lvert\, \frac{\left(\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right) \cdot\left(\begin{array}{c}2 \\ -3 \\ 1\end{array}\right)}{\left.\left\lvert\, \begin{array}{c}-1 \\ 2 \\ 3\end{array}\right.\right) \left.| |\left(\begin{array}{c}2 \\ 3 \\ 1\end{array}\right) \right\rvert\,}\right.\right)$

$$
\begin{aligned}
& \theta=\cos ^{-1}\left(\frac{1-51}{\sqrt{4 \sqrt{14}}}\right) \\
& \theta=\cos ^{-1}\left(\frac{5}{14}\right) \\
& \theta=69.1^{\circ}
\end{aligned}
$$

c) $\left(\begin{array}{c}6-\lambda \\ -3+2 \lambda \\ -2+3 \lambda\end{array}\right)=\left(\begin{array}{c}5 \\ -1 \\ 1\end{array}\right)$

$$
\begin{aligned}
& 6-\lambda=5 \Rightarrow \lambda=1 \\
& -3+2 \lambda=-1 \Rightarrow 2 \lambda=2 \\
& -2+3 \lambda=1 \Rightarrow 3 \lambda=3 \Rightarrow
\end{aligned}
$$

d)

$$
\begin{aligned}
& \overrightarrow{A B}=b-a=\left(\begin{array}{c}
5 \\
-1 \\
1
\end{array}\right)-\left(\begin{array}{l}
3 \\
3 \\
7
\end{array}\right)=\left(\begin{array}{c}
2 \\
-4 \\
-6 \\
-6
\end{array}\right) \\
& |\overrightarrow{A B}|=\sqrt{2^{2}+4^{2}+6^{2}}=2 \sqrt{14}
\end{aligned}
$$

$$
\therefore s d=2 \sqrt{14} \sin (69.1 . .)=6.99(35 f)
$$

Figure 3
Figure 3 shows part of the curve C with parametric equations

$$
x=\tan \theta, \quad y=\sin \theta, \quad 0 \leqslant \theta<\frac{\pi}{2}
$$

The point P lies on C and has coordinates $\left(\sqrt{ } 3, \frac{1}{2} \sqrt{ } 3\right)$.
(a) Find the value of θ at the point P.

The line l is a normal to C at P. The normal cuts the x-axis at the point Q.
(b) Show that Q has coordinates $(k \sqrt{ } 3,0)$, giving the value of the constant k.

The finite shaded region S shown in Figure 3 is bounded by the curve C, the line $x=\sqrt{ } 3$ and the x-axis. This shaded region is rotated through 2π radians about the x-axis to form a solid of revolution.
(c) Find the volume of the solid of revolution, giving your answer in the form $p \pi \sqrt{3}+q \pi^{2}$, where p and q are constants.
a) $x=\sqrt{3} \Rightarrow \sqrt{3}=\tan \theta \Rightarrow \theta=\frac{\pi}{3}$

$$
\begin{aligned}
& \text { b) } \frac{d x}{d \theta}=\sec ^{2} \theta \quad \frac{d y}{d \theta}=\cos \theta \Rightarrow \frac{d y}{d x}=\frac{\cos \theta}{\sec ^{2} \theta} \\
& \theta=\frac{\pi}{3} \text { at } P \frac{d y}{d x}=\left(\cos \left(\frac{\pi}{3}\right)\right)^{3}=\frac{1}{8} \Rightarrow m_{n}=-8 \\
& \Rightarrow y-\frac{\sqrt{3}}{2}=-8(x-\sqrt{3}) \quad \text { Crosses } x \text { when } y=0 \\
& \Rightarrow-\frac{\sqrt{3}}{2}=-8(x-\sqrt{3}) \Rightarrow \frac{\sqrt{3}}{16}=x-\sqrt{3} \Rightarrow x=\frac{17}{16} \sqrt{3}
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
& V 0 l=\pi \int_{0}^{\sqrt{3}} y^{2} \frac{d x}{d \theta} d \theta=\pi \int_{0}^{\frac{\pi}{3}} \sin ^{2} \theta \times \sec ^{2} \theta d \theta \\
&=\pi \int_{0}^{\frac{\pi}{3}} \frac{\sin ^{2} \theta}{\cos ^{2} \theta} d \theta=\pi \int_{0}^{\frac{\pi}{3}} \tan ^{2} \theta d \theta \quad \frac{\sin ^{2}+\frac{\cos ^{2}}{\cos ^{2}} \frac{1}{\cos ^{2}} \frac{1}{\operatorname{tas}^{2}}}{\tan ^{2} \theta+1=\sec ^{2} \theta} \\
&=\pi \int_{0}^{\frac{\pi}{3}} \sec ^{2} \theta-1 d \theta \\
&=\pi[\tan \theta-\theta]_{0}^{\frac{\pi}{3}}=\pi\left[\left(\sqrt{3}-\frac{\pi}{3}\right)-(0-0)\right] \\
&= \pi \sqrt{3}-\frac{1}{3} \pi^{2}
\end{aligned}
$$

8. (a) Find $\int(4 y+3)^{-\frac{1}{2}} \mathrm{~d} y$
(b) Given that $y=1.5$ at $x=-2$, solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{ }(4 y+3)}{x^{2}}
$$

giving your answer in the form $y=\mathrm{f}(x)$.
a)

$$
\left.\begin{array}{rl}
x=(4 y+3)^{\frac{1}{2}} \times\left(\times \frac{1}{2}\right) \\
& \frac{d x}{d y}=\frac{1}{2}(4 y+3)^{-\frac{1}{2}} \times 4\left(\times \frac{1}{2}\right)
\end{array}\right)
$$

$$
\begin{aligned}
& \text { b) } \int(4 y+3)^{-\frac{1}{2}} d y=\int \frac{1}{x^{2}} d x \\
& \Rightarrow \frac{1}{2}(4 y+3)^{\frac{1}{2}}+c=-\frac{1}{x} \\
& (-2,1 \cdot 5) \Rightarrow \frac{3}{2}+c=\frac{1}{2} \Rightarrow c=-1 \\
& \Rightarrow \frac{1}{2}(4 y+3)^{\frac{1}{2}}-1=-\frac{1}{x} \Rightarrow(4 y+3)^{\frac{1}{2}}=2-\frac{2}{x} \\
& \Rightarrow 4 y+3=\left(2-\frac{2}{x}\right)^{2} \Rightarrow y=\frac{1}{4}\left(2-\frac{2}{x}\right)^{2}-\frac{3}{4}
\end{aligned}
$$

